Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 3679, 2024 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-38355764

RESUMO

In animal species that have the capability of regenerating tissues and limbs, cell proliferation is enhanced after wound healing and is essential for the reconstruction of injured tissue. Although the ability to induce cell proliferation is a common feature of such species, the molecular mechanisms that regulate the transition from wound healing to regenerative cell proliferation remain unclear. Here, we show that upon injury, InhibinßA and JunB cooperatively function for this transition during Xenopus tadpole tail regeneration. We found that the expression of inhibin subunit beta A (inhba) and junB proto-oncogene (junb) is induced by injury-activated TGF-ß/Smad and MEK/ERK signaling in regenerating tails. Similarly to junb knockout (KO) tadpoles, inhba KO tadpoles show a delay in tail regeneration, and inhba/junb double KO (DKO) tadpoles exhibit severe impairment of tail regeneration compared with either inhba KO or junb KO tadpoles. Importantly, this impairment is associated with a significant reduction of cell proliferation in regenerating tissue. Moreover, JunB regulates tail regeneration via FGF signaling, while InhibinßA likely acts through different mechanisms. These results demonstrate that the cooperation of injury-induced InhibinßA and JunB is critical for regenerative cell proliferation, which is necessary for re-outgrowth of regenerating Xenopus tadpole tails.


Assuntos
Regeneração , Transdução de Sinais , Animais , Xenopus laevis/metabolismo , Larva/genética , Regeneração/genética , Proliferação de Células , Cauda/fisiologia
2.
PLoS Genet ; 19(10): e1010990, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37792893

RESUMO

Genetic triggers for sex determination are frequently co-inherited with other linked genes that may also influence one or more sex-specific phenotypes. To better understand how sex-limited regions evolve and function, we studied a small W chromosome-specific region of the frog Xenopus laevis that contains only three genes (dm-w, scan-w, ccdc69-w) and that drives female differentiation. Using gene editing, we found that the sex-determining function of this region requires dm-w but that scan-w and ccdc69-w are not essential for viability, female development, or fertility. Analysis of mesonephros+gonad transcriptomes during sexual differentiation illustrates masculinization of the dm-w knockout transcriptome, and identifies mostly non-overlapping sets of differentially expressed genes in separate knockout lines for each of these three W-specific gene compared to wildtype sisters. Capture sequencing of almost all Xenopus species and PCR surveys indicate that the female-determining function of dm-w is present in only a subset of species that carry this gene. These findings map out a dynamic evolutionary history of a newly evolved W chromosome-specific genomic region, whose components have distinctive functions that frequently degraded during Xenopus diversification, and evidence the evolutionary consequences of recombination suppression.


Assuntos
Processos de Determinação Sexual , Fatores de Transcrição , Animais , Masculino , Feminino , Xenopus laevis/metabolismo , Fatores de Transcrição/genética , Processos de Determinação Sexual/genética , Genômica , Cromossomos/genética , Cromossomos/metabolismo
3.
Elife ; 122023 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-37449984

RESUMO

The first steps of vision take place within a stack of tightly packed disc-shaped membranes, or 'discs', located in the outer segment compartment of photoreceptor cells. In rod photoreceptors, discs are enclosed inside the outer segment and contain deep indentations in their rims called 'incisures'. The presence of incisures has been documented in a variety of species, yet their role remains elusive. In this study, we combined traditional electron microscopy with three-dimensional electron tomography to demonstrate that incisures are formed only after discs become completely enclosed. We also observed that, at the earliest stage of their formation, discs are not round as typically depicted but rather are highly irregular in shape and resemble expanding lamellipodia. Using genetically manipulated mice and frogs and measuring outer segment protein abundances by quantitative mass spectrometry, we further found that incisure size is determined by the molar ratio between peripherin-2, a disc rim protein critical for the process of disc enclosure, and rhodopsin, the major structural component of disc membranes. While a high perpherin-2 to rhodopsin ratio causes an increase in incisure size and structural complexity, a low ratio precludes incisure formation. Based on these data, we propose a model whereby normal rods express a modest excess of peripherin-2 over the amount required for complete disc enclosure in order to ensure that this important step of disc formation is accomplished. Once the disc is enclosed, the excess peripherin-2 incorporates into the rim to form an incisure.


Assuntos
Rodopsina , Segmento Externo da Célula Bastonete , Animais , Camundongos , Rodopsina/metabolismo , Periferinas/metabolismo , Células Fotorreceptoras/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Visão Ocular
4.
bioRxiv ; 2023 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-37066355

RESUMO

The first steps of vision take place within a stack of tightly packed disc-shaped membranes, or "discs", located in the outer segment compartment of photoreceptor cells. In rod photoreceptors, discs are enclosed inside the outer segment and contain deep indentations in their rims called "incisures". The presence of incisures has been documented in a variety of species, yet their role remains elusive. In this study, we combined traditional electron microscopy with three-dimensional electron tomography to demonstrate that incisures are formed only after discs become completely enclosed. We also observed that, at the earliest stage of their formation, discs are not round as typically depicted but rather are highly irregular in shape and resemble expanding lamellipodia. Using genetically manipulated mice and frogs and measuring outer segment protein abundances by quantitative mass spectrometry, we further found that incisure size is determined by the molar ratio between peripherin-2, a disc rim protein critical for the process of disc enclosure, and rhodopsin, the major structural component of disc membranes. While a high perpherin-2 to rhodopsin ratio causes an increase in incisure size and structural complexity, a low ratio precludes incisure formation. Based on these data, we propose a model whereby normal rods express a modest excess of peripherin-2 over the amount required for complete disc enclosure in order to ensure that this important step of disc formation is accomplished. Once the disc is enclosed, the excess peripherin-2 incorporates into the rim to form an incisure.

5.
Gen Comp Endocrinol ; 331: 114179, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36427548

RESUMO

Precisely regulated thyroid hormone (TH) signaling within tissues during frog metamorphosis gives rise to the organism-wide coordination of developmental events among organs required for survival. This TH signaling is controlled by multiple cellular mechanisms, including TH transport across the plasma membrane. A highly specific TH transporter has been identified, namely monocarboxylate transporter 8 (MCT8), which facilitates uptake and efflux of TH and is differentially and dynamically expressed among tissues during metamorphosis. We hypothesized that loss of MCT8 would alter tissue sensitivity to TH and affect the timing of tissue transformation. To address this, we used CRISPR/Cas9 to introduce frameshift mutations inslc16a2, the gene encoding MCT8, inXenopus laevis. We produced homozygous mutant tadpoles with a 29-bp mutation in the l-chromosome and a 20-bp mutation in the S-chromosome. We found that MCT8 mutants survive metamorphosis with normal growth and development of external morphology throughout the larval period. Consistent with this result, the expression of the pituitary hormone regulating TH plasma levels (tshb) was similar among genotypes as was TH response gene expression in brain at metamorphic climax. Further, delayed initiation of limb outgrowth during natural metamorphosis and reduced hindlimb and tail TH sensitivity were not observed in MCT8 mutants. In sum, we did not observe an effect on TH-dependent development in MCT8 mutants, suggesting compensatory TH transport occurs in tadpole tissues, as seen in most tissues in all model organisms examined.


Assuntos
Transportadores de Ácidos Monocarboxílicos , Simportadores , Animais , Transportadores de Ácidos Monocarboxílicos/genética , Transportadores de Ácidos Monocarboxílicos/metabolismo , Hormônios Tireóideos/metabolismo , Metamorfose Biológica/genética , Transporte Biológico , Mutação , Larva/metabolismo , Simportadores/genética , Simportadores/metabolismo
6.
Development ; 149(17)2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35946588

RESUMO

Asymmetric signalling centres in the early embryo are essential for axis formation in vertebrates. These regions (e.g. amphibian dorsal morula, mammalian anterior visceral endoderm) require stabilised nuclear ß-catenin, but the role of localised Wnt ligand signalling activity in their establishment remains unclear. In Xenopus, dorsal ß-catenin is initiated by vegetal microtubule-mediated symmetry breaking in the fertilised egg, known as 'cortical rotation'. Localised wnt11b mRNA and ligand-independent activators of ß-catenin have been implicated in dorsal ß-catenin activation, but the extent to which each contributes to axis formation in this paradigm remains unclear. Here, we describe a CRISPR-mediated maternal-effect mutation in Xenopus laevis wnt11b.L. We find that wnt11b is maternally required for robust dorsal axis formation and for timely gastrulation, and zygotically for left-right asymmetry. Importantly, we show that vegetal microtubule assembly and cortical rotation are reduced in wnt11b mutant eggs. In addition, we show that activated Wnt coreceptor Lrp6 and Dishevelled lack behaviour consistent with roles in early ß-catenin stabilisation, and that neither is regulated by Wnt11b. This work thus implicates Wnt11b in the distribution of putative dorsal determinants rather than in comprising the determinants themselves. This article has an associated 'The people behind the papers' interview.


Assuntos
Proteínas Wnt , Proteínas de Xenopus , Xenopus laevis , beta Catenina , Animais , Padronização Corporal/genética , Embrião não Mamífero/fisiologia , Desenvolvimento Embrionário , Ligantes , Proteínas Wnt/genética , Via de Sinalização Wnt/genética , Proteínas de Xenopus/genética , Xenopus laevis/genética , Xenopus laevis/crescimento & desenvolvimento , beta Catenina/genética
7.
Open Biol ; 12(7): 220089, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35857907

RESUMO

The diploid anuran Xenopus tropicalis has emerged as a key research model in cell and developmental biology. To enhance the usefulness of this species, we developed methods for generating immortal cell lines from Nigerian strain (NXR_1018, RRID:SCR_013731) X. tropicalis embryos. We generated 14 cell lines that were propagated for several months. We selected four morphologically distinct lines, XTN-6, XTN-8, XTN-10 and XTN-12 for further characterization. Karyotype analysis revealed that three of the lines, XTN-8, XTN-10 and XTN-12 were primarily diploid. XTN-6 cultures showed a consistent mixed population of diploid cells, cells with chromosome 8 trisomy, and cells containing a tetraploid content of chromosomes. The lines were propagated using conventional culture methods as adherent cultures at 30°C in a simple, diluted L-15 medium containing fetal bovine serum without use of a high CO2 incubator. Transcriptome analysis indicated that the four lines were distinct lineages. These methods will be useful in the generation of cell lines from normal and mutant strains of X. tropicalis as well as other species of Xenopus.


Assuntos
Cromossomos , Animais , Linhagem Celular , Xenopus , Xenopus laevis/genética
8.
J Virol ; 96(11): e0063422, 2022 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-35575553

RESUMO

The global amphibian declines are compounded by infections with members of the Ranavirus genus such as Frog Virus 3 (FV3). Premetamorphic anuran amphibians are believed to be significantly more susceptible to FV3 while this pathogen targets the kidneys of both pre- and postmetamorphic animals. Paradoxically, FV3-challenged Xenopus laevis tadpoles exhibit lower kidney viral loads than adult frogs. Presently, we demonstrate that X. laevis tadpoles are intrinsically more resistant to FV3 kidney infections than cohort-matched metamorphic and postmetamorphic froglets and that this resistance appears to be epigenetically conferred by endogenous retroviruses (ERVs). Using a X. laevis kidney-derived cell line, we show that enhancing ERV gene expression activates cellular double-stranded RNA-sensing pathways, resulting in elevated mRNA levels of antiviral interferon (IFN) cytokines and thus greater anti-FV3 protection. Finally, our results indicate that large esterase-positive myeloid-lineage cells, rather than renal cells, are responsible for the elevated ERV/IFN axis seen in the tadpole kidneys. This conclusion is supported by our observation that CRISPR-Cas9 ablation of colony-stimulating factor-3 results in abolished homing of these myeloid cells to tadpole kidneys, concurrent with significantly abolished tadpole kidney expression of both ERVs and IFNs. We believe that the manuscript marks an important step forward in understanding the mechanisms controlling amphibian antiviral defenses and thus susceptibility and resistance to pathogens like FV3. IMPORTANCE Global amphibian biodiversity is being challenged by pathogens like the Frog Virus 3 (FV3) ranavirus, underlining the need to gain a greater understanding of amphibian antiviral defenses. While it was previously believed that anuran (frog/toad) amphibian tadpoles are more susceptible to FV3, we demonstrated that tadpoles are in fact more resistant to this virus than metamorphic and postmetamorphic froglets. We showed that this resistance is conferred by large myeloid cells within the tadpole kidneys (central FV3 target), which possess an elevated expression of endogenous retroviruses (ERVs). In turn, these ERVs activate cellular double-stranded RNA-sensing pathways, resulting in a greater expression of antiviral interferon cytokines, thereby offering the observed anti-FV3 protection.


Assuntos
Infecções por Vírus de DNA , Retrovirus Endógenos , Ranavirus , Xenopus laevis , Animais , Linhagem Celular , Infecções por Vírus de DNA/imunologia , Infecções por Vírus de DNA/veterinária , Resistência à Doença , Retrovirus Endógenos/imunologia , Interferons/imunologia , Rim/virologia , Larva/imunologia , Larva/virologia , RNA de Cadeia Dupla , Ranavirus/patogenicidade , Xenopus laevis/virologia
9.
Development ; 148(21)2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34739029

RESUMO

Genome editing simplifies the generation of new animal models for congenital disorders. However, the detailed and unbiased phenotypic assessment of altered embryonic development remains a challenge. Here, we explore how deep learning (U-Net) can automate segmentation tasks in various imaging modalities, and we quantify phenotypes of altered renal, neural and craniofacial development in Xenopus embryos in comparison with normal variability. We demonstrate the utility of this approach in embryos with polycystic kidneys (pkd1 and pkd2) and craniofacial dysmorphia (six1). We highlight how in toto light-sheet microscopy facilitates accurate reconstruction of brain and craniofacial structures within X. tropicalis embryos upon dyrk1a and six1 loss of function or treatment with retinoic acid inhibitors. These tools increase the sensitivity and throughput of evaluating developmental malformations caused by chemical or genetic disruption. Furthermore, we provide a library of pre-trained networks and detailed instructions for applying deep learning to the reader's own datasets. We demonstrate the versatility, precision and scalability of deep neural network phenotyping on embryonic disease models. By combining light-sheet microscopy and deep learning, we provide a framework for higher-throughput characterization of embryonic model organisms. This article has an associated 'The people behind the papers' interview.


Assuntos
Aprendizado Profundo , Desenvolvimento Embrionário/genética , Fenótipo , Animais , Anormalidades Craniofaciais/embriologia , Anormalidades Craniofaciais/genética , Anormalidades Craniofaciais/patologia , Modelos Animais de Doenças , Processamento de Imagem Assistida por Computador , Camundongos , Microscopia , Mutação , Redes Neurais de Computação , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/patologia , Doenças Renais Policísticas/embriologia , Doenças Renais Policísticas/genética , Doenças Renais Policísticas/patologia , Proteínas de Xenopus/genética , Xenopus laevis
10.
Biochem Biophys Res Commun ; 565: 91-96, 2021 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-34102475

RESUMO

Amphibians such as Xenopus tropicalis exhibit a remarkable capacity for tissue regeneration after traumatic injury. Although transforming growth factor-ß (TGF-ß) receptor signaling is known to be essential for tissue regeneration in fish and amphibians, the role of TGF-ß ligands in this process is not well understood. Here, we show that inhibition of TGF-ß1 function prevents tail regeneration in Xenopus tropicalis tadpoles. We found that expression of tgfb1 is present before tail amputation and is sustained throughout the regeneration process. CRISPR-mediated knock-out (KO) of tgfb1 retards tail regeneration; the phenotype of tgfb1 KO tadpoles can be rescued by injection of tgfb1 mRNA. Cell proliferation, a critical event for the success of tissue regeneration, is downregulated in tgfb1 KO tadpoles. In addition, tgfb1 KO reduces the expression of phosphorylated Smad2/3 (pSmad2/3) which is important for TGF-ß signal-mediated cell proliferation. Collectively, our results show that TGF-ß1 regulates cell proliferation through the activation of Smad2/3. We therefore propose that TGF-ß1 plays a critical role in TGF-ß receptor-dependent tadpole tail regeneration in Xenopus.


Assuntos
Larva/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Animais , Proliferação de Células , Transdução de Sinais , Proteína Smad2/metabolismo , Proteína Smad3/metabolismo , Xenopus , Proteínas de Xenopus/metabolismo
11.
Cold Spring Harb Protoc ; 2021(3)2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33272975

RESUMO

The embryos of the African clawed frog, Xenopus laevis, are a powerful substrate for the study of complex fundamental biological and disease mechanisms in neurobiology, physiology, molecular biology, cell biology, and developmental biology. A simple and straightforward technique for generating a large number of developmentally synchronized embryos is in vitro fertilization (IVF). IVF permits simultaneous fertilization of thousands of eggs but requires the death of the parental male, which may not be feasible if the male comes from a stock of precious animals. An alternative to euthanizing a precious male is to use a natural mating, which allows for the collection of many embryos with minimal preparation but with the potential loss of the experimental advantage of developmental synchronization. Here we present both strategies for obtaining X. laevis embryos.


Assuntos
Embrião não Mamífero/fisiologia , Fisiologia/métodos , Xenopus laevis/embriologia , Animais , Fertilização/fisiologia , Fertilização In Vitro , Masculino , Ovulação/fisiologia , Espermatozoides/fisiologia , Testículo/fisiologia
12.
Cold Spring Harb Protoc ; 2021(3)2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33272976

RESUMO

Nearly a century ago, studies by Lancelot Hogben and others demonstrated that ovulation in female Xenopus laevis can be induced via injection of mammalian gonadotropins into the dorsal lymph sac, allowing for egg production throughout the year independent of the normal reproductive cycles. Hormonally induced females are capable of producing thousands of eggs in a single spawning, which can then be fertilized to generate embryos or used as a substrate for generation of egg extracts. The protocol for induction of ovulation and subsequent egg collection is straightforward and robust, yet some of its details may vary among laboratories based on prior training, availability of necessary reagents, or the experimental objectives. As the goal of this protocol is not to describe every single variation possible for acquiring eggs but to provide a simple and clear description that can be easily applied by researchers with no prior working experience with X. laevis, we focus on describing the method we use at the National Xenopus Resource-that is, inducing ovulation in X. laevis via dorsal lymph sac injection of gonadotropic hormones and the stimulation of egg laying through application of gentle pressure to the females.


Assuntos
Óvulo/fisiologia , Fisiologia/métodos , Xenopus laevis/fisiologia , Animais , Feminino , Gonadotropinas/administração & dosagem , Gonadotropinas/farmacologia , Óvulo/efeitos dos fármacos
13.
PLoS Genet ; 16(11): e1009121, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33166278

RESUMO

In many species, sexual differentiation is a vital prelude to reproduction, and disruption of this process can have severe fitness effects, including sterility. It is thus interesting that genetic systems governing sexual differentiation vary among-and even within-species. To understand these systems more, we investigated a rare example of a frog with three sex chromosomes: the Western clawed frog, Xenopus tropicalis. We demonstrate that natural populations from the western and eastern edges of Ghana have a young Y chromosome, and that a male-determining factor on this Y chromosome is in a very similar genomic location as a previously known female-determining factor on the W chromosome. Nucleotide polymorphism of expressed transcripts suggests genetic degeneration on the W chromosome, emergence of a new Y chromosome from an ancestral Z chromosome, and natural co-mingling of the W, Z, and Y chromosomes in the same population. Compared to the rest of the genome, a small sex-associated portion of the sex chromosomes has a 50-fold enrichment of transcripts with male-biased expression during early gonadal differentiation. Additionally, X. tropicalis has sex-differences in the rates and genomic locations of recombination events during gametogenesis that are similar to at least two other Xenopus species, which suggests that sex differences in recombination are genus-wide. These findings are consistent with theoretical expectations associated with recombination suppression on sex chromosomes, demonstrate that several characteristics of old and established sex chromosomes (e.g., nucleotide divergence, sex biased expression) can arise well before sex chromosomes become cytogenetically distinguished, and show how these characteristics can have lingering consequences that are carried forward through sex chromosome turnovers.


Assuntos
Cromossomos Sexuais/genética , Processos de Determinação Sexual/genética , Diferenciação Sexual/genética , Xenopus/genética , Animais , Feminino , Aptidão Genética , Gana , Masculino , Recombinação Genética
14.
Sci Rep ; 10(1): 14662, 2020 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-32887910

RESUMO

CRISPR/Cas9 genome editing has revolutionized functional genomics in vertebrates. However, CRISPR/Cas9 edited F0 animals too often demonstrate variable phenotypic penetrance due to the mosaic nature of editing outcomes after double strand break (DSB) repair. Even with high efficiency levels of genome editing, phenotypes may be obscured by proportional presence of in-frame mutations that still produce functional protein. Recently, studies in cell culture systems have shown that the nature of CRISPR/Cas9-mediated mutations can be dependent on local sequence context and can be predicted by computational methods. Here, we demonstrate that similar approaches can be used to forecast CRISPR/Cas9 gene editing outcomes in Xenopus tropicalis, Xenopus laevis, and zebrafish. We show that a publicly available neural network previously trained in mouse embryonic stem cell cultures (InDelphi-mESC) is able to accurately predict CRISPR/Cas9 gene editing outcomes in early vertebrate embryos. Our observations can have direct implications for experiment design, allowing the selection of guide RNAs with predicted repair outcome signatures enriched towards frameshift mutations, allowing maximization of CRISPR/Cas9 phenotype penetrance in the F0 generation.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes/métodos , Penetrância , Xenopus laevis/embriologia , Xenopus laevis/genética , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Animais , Proteína 9 Associada à CRISPR/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Mutação da Fase de Leitura , Frequência do Gene , Células HEK293 , Humanos , Camundongos , Células-Tronco Embrionárias Murinas/metabolismo , RNA Guia de Cinetoplastídeos/genética
15.
Sci Rep ; 10(1): 13757, 2020 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-32792587

RESUMO

Nighttime surges in melatonin levels activate melatonin receptors, which synchronize cellular activities with the natural light/dark cycle. Melatonin receptors are expressed in several cell types in the retina, including the photon-sensitive rods and cones. Previous studies suggest that long-term photoreceptor survival and retinal health is in part reliant on melatonin orchestration of circadian homeostatic activities. This scenario would accordingly envisage that disruption of melatonin receptor signaling is detrimental to photoreceptor health. Using in vivo CRISPR/Cas9 genomic editing, we discovered that a small deletion mutation of the Mel1a melatonin receptor (mtnr1a) gene causes a loss of rod photoreceptors in retinas of developing Xenopus tropicalis heterozygous, but not homozygous mutant tadpoles. Cones were relatively spared from degeneration, and the rod loss phenotype was not obvious after metamorphosis. Localization of Mel1a receptor protein appeared to be about the same in wild type and mutant retinas, suggesting that the mutant protein is expressed at some level in mutant retinal cells. The severe impact on early rod photoreceptor viability may signify a previously underestimated critical role in circadian influences on long-term retinal health and preservation of sight. These data offer evidence that disturbance of homeostatic, circadian signaling, conveyed through a mutated melatonin receptor, is incompatible with rod photoreceptor survival.


Assuntos
Receptores de Melatonina/genética , Degeneração Retiniana/genética , Células Fotorreceptoras Retinianas Bastonetes/patologia , Proteínas de Xenopus/genética , Xenopus/genética , Sequência de Aminoácidos , Animais , Animais Geneticamente Modificados , Sistemas CRISPR-Cas , Ritmo Circadiano/genética , Mutação da Fase de Leitura/genética , Melatonina/metabolismo , Células Fotorreceptoras Retinianas Cones/patologia , Deleção de Sequência/genética , Transdução de Sinais/genética
16.
Cold Spring Harb Protoc ; 2020(10)2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32404311

RESUMO

Modular recirculating animal aquaculture systems incorporate UV sterilization and biological, mechanical, and activated carbon filtration, creating a nearly self-contained stable housing environment for Xenopus laevis Nonetheless, minimal water exchange is necessary to mitigate accumulation of metabolic waste, and regular weekly, monthly, and yearly maintenance is needed to ensure accurate and efficient operation. This protocol describes the methods for establishing a new recirculating system and the necessary maintenance, as well as water quality parameters, required for keeping Xenopus laevis.


Assuntos
Criação de Animais Domésticos/métodos , Aquicultura/métodos , Água/metabolismo , Xenopus laevis/crescimento & desenvolvimento , Criação de Animais Domésticos/normas , Animais , Concentração de Íons de Hidrogênio , Manutenção , Densidade Demográfica , Controle de Qualidade , Temperatura , Água/normas , Xenopus laevis/metabolismo
17.
Cold Spring Harb Protoc ; 2020(12)2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32404312

RESUMO

Modular recirculating animal aquaculture systems incorporate UV sterilization and biological, mechanical, and activated carbon filtration, creating a nearly self-contained stable housing environment for Xenopus tropicalis Nonetheless, minimal water exchange is necessary to mitigate accumulation of metabolic waste, and regular weekly, monthly, and yearly maintenance is needed to ensure accurate and efficient operation. This protocol describes the methods for establishing a new recirculating system and the necessary maintenance, as well as water quality parameters, required for keeping Xenopus tropicalis.


Assuntos
Criação de Animais Domésticos/métodos , Abrigo para Animais/normas , Temperatura , Água/metabolismo , Xenopus/crescimento & desenvolvimento , Animais , Concentração de Íons de Hidrogênio , Larva/crescimento & desenvolvimento , Manutenção , Densidade Demográfica
18.
J Cell Biol ; 219(4)2020 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-32328638

RESUMO

Fragile-X mental retardation autosomal homologue-1 (FXR1) is a muscle-enriched RNA-binding protein. FXR1 depletion is perinatally lethal in mice, Xenopus, and zebrafish; however, the mechanisms driving these phenotypes remain unclear. The FXR1 gene undergoes alternative splicing, producing multiple protein isoforms and mis-splicing has been implicated in disease. Furthermore, mutations that cause frameshifts in muscle-specific isoforms result in congenital multi-minicore myopathy. We observed that FXR1 alternative splicing is pronounced in the serine- and arginine-rich intrinsically disordered domain; these domains are known to promote biomolecular condensation. Here, we show that tissue-specific splicing of fxr1 is required for Xenopus development and alters the disordered domain of FXR1. FXR1 isoforms vary in the formation of RNA-dependent biomolecular condensates in cells and in vitro. This work shows that regulation of tissue-specific splicing can influence FXR1 condensates in muscle development and how mis-splicing promotes disease.


Assuntos
Processamento Alternativo/genética , Células Musculares/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Xenopus/genética , Adulto , Idoso , Animais , Células Cultivadas , Feminino , Humanos , Lactente , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos , Pessoa de Meia-Idade , Desenvolvimento Muscular , Músculos/metabolismo , Proteínas de Ligação a RNA/metabolismo , Xenopus , Proteínas de Xenopus/metabolismo , Adulto Jovem
19.
Biochem Biophys Res Commun ; 522(4): 990-995, 2020 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-31812242

RESUMO

Xenopus tropicalis tadpoles can regenerate an amputated tail, including spinal cord, muscle and notochord, through cell proliferation and differentiation. However, the molecular mechanisms that regulate cell proliferation during tail regeneration are largely unknown. Here we show that JunB plays an important role in tail regeneration by regulating cell proliferation. The expression of junb is rapidly activated and sustained during tail regeneration. Knockout (KO) of junb causes a delay in tail regeneration and tissue differentiation. In junb KO tadpoles, cell proliferation is prevented before tissue differentiation. Furthermore, TGF-ß signaling, which is activated just after tail amputation, regulates the induction and maintenance of junb expression. These findings demonstrate that JunB, a downstream component of TGF-ß signaling, works as a positive regulator of cell proliferation during Xenopus tail regeneration.


Assuntos
Regeneração/fisiologia , Cauda/fisiologia , Fator de Transcrição AP-1/metabolismo , Xenopus/fisiologia , Animais , Proliferação de Células , Regulação para Baixo/genética , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Inativação de Genes , Larva/fisiologia , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo
20.
Proc Natl Acad Sci U S A ; 115(45): E10615-E10624, 2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30352852

RESUMO

Codevelopment of the lungs and heart underlies key evolutionary innovations in the transition to terrestrial life. Cardiac specializations that support pulmonary circulation, including the atrial septum, are generated by second heart field (SHF) cardiopulmonary progenitors (CPPs). It has been presumed that transcription factors required in the SHF for cardiac septation, e.g., Tbx5, directly drive a cardiac morphogenesis gene-regulatory network. Here, we report instead that TBX5 directly drives Wnt ligands to initiate a bidirectional signaling loop between cardiopulmonary mesoderm and the foregut endoderm for endodermal pulmonary specification and, subsequently, atrial septation. We show that Tbx5 is required for pulmonary specification in mice and amphibians but not for swim bladder development in zebrafish. TBX5 is non-cell-autonomously required for pulmonary endoderm specification by directly driving Wnt2 and Wnt2b expression in cardiopulmonary mesoderm. TBX5 ChIP-sequencing identified cis-regulatory elements at Wnt2 sufficient for endogenous Wnt2 expression domains in vivo and required for Wnt2 expression in precardiac mesoderm in vitro. Tbx5 cooperated with Shh signaling to drive Wnt2b expression for lung morphogenesis. Tbx5 haploinsufficiency in mice, a model of Holt-Oram syndrome, caused a quantitative decrement of mesodermal-to-endodermal Wnt signaling and subsequent endodermal-to-mesodermal Shh signaling required for cardiac morphogenesis. Thus, Tbx5 initiates a mesoderm-endoderm-mesoderm signaling loop in lunged vertebrates that provides a molecular basis for the coevolution of pulmonary and cardiac structures required for terrestrial life.


Assuntos
Evolução Molecular , Coração/embriologia , Pulmão/embriologia , Proteínas com Domínio T/genética , Proteína Wnt2/genética , Animais , Elementos Facilitadores Genéticos , Perfilação da Expressão Gênica , Camundongos , Camundongos Mutantes , Transdução de Sinais , Transcrição Gênica , Peixe-Zebra/embriologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...